References
21.6 Statistical Methods and R Programming
Everitt, B., Hothorn, T. (2011). An Introduction to Applied Multivariate Analysis with R. Springer-Verlag.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2015). An Introduction to Statistical Learning, with Applications in R. Springer.
Timbers, T., Campbell, T., & Lee, M. (2022). Data Science: A First Introduction. Online version
Wickham, H., & Grolemund, G. (2018). R for Data Science. O’Reilly. Freely available online
Dauber, D. (2022). R for non-programmers. Free book
21.8 Statistical Software and Tools
R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
RStudio Team (2024). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA.
Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R Markdown: The Definitive Guide. Chapman and Hall/CRC.
21.9 Course Materials
Salvini, N. (2025). Statistics & Big Data 25-26 Labs. Course website and materials.
Dabo-Niang, S. (2025). Advanced Modeling Techniques. Intensive session materials.
21.10 Additional Resources
CRAN Task Views: https://cran.r-project.org/web/views/
R-bloggers: https://www.r-bloggers.com/
Stack Overflow R Tag: https://stackoverflow.com/questions/tagged/r
R Documentation: https://www.rdocumentation.org/