# Nonlinear regression model

Statistics and Big Data

Niccolò Salvini, PhD

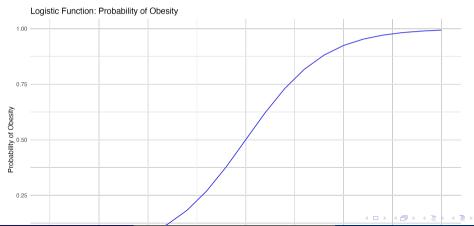
UCSC

Academic Year 2025-2026

Course: Statistics and Big Data

#### Overview

- Logistic Regression
- 2 Linear Regression Recap
- Transition to Logistic Regression
- 4 Core Concept of Logistic Regression
- 5 Interpreting the Logistic Function
- 6 Classification with Logistic Regression
- Testing Variable Significance
- Maximum Likelihood Estimation
- Summary of Logistic Regression
- 10 Exercises


Academic Year 2025-2026

### What is Logistic Regression?

How do we predict outcomes that are categorical, such as whether a mouse is obese or not?

### What is Logistic Regression?

How do we predict outcomes that are categorical, such as whether a mouse is obese or not? What if we could model the probability of an event occurring rather than predicting a continuous value?



### **Linear Regression Recap**

Let's consider a familiar example: linear regression. Imagine we have data on mouse weight and size. By fitting a line to this data, we can:

- Calculate the correlation (R-squared).
- 2 Determine statistical significance (p-value).
- Predict size based on weight.

### **Linear Regression Recap**

Let's consider a familiar example: linear regression. Imagine we have data on mouse weight and size. By fitting a line to this data, we can:

- Calculate the correlation (R-squared).
- 2 Determine statistical significance (p-value).
- 3 Predict size based on weight.

This process illustrates how linear regression serves as a foundational machine learning technique.

### Transition to Logistic Regression

Now that we understand linear regression, how does logistic regression differ?

### Transition to Logistic Regression

Now that we understand linear regression, how does logistic regression differ? Instead of predicting a continuous outcome, logistic regression predicts a binary outcome: true or false, obese or not obese.

### Core Concept of Logistic Regression

Logistic regression fits an S-shaped curve, known as the logistic function, to the data.

## Core Concept of Logistic Regression

Logistic regression fits an S-shaped curve, known as the logistic function, to the data. This curve represents the probability of an event occurring, ranging from 0 to 1.

#### Mathematical Formulation

$$P(Y = 1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

#### Where:

- P(Y = 1|X) is the probability of the event occurring.
- $\beta_0$  is the intercept.

Logistic Function Curve

•  $\beta_1$  is the coefficient for the predictor variable X.



#### Interpreting the Logistic Function

What does the logistic function tell us about mouse obesity?

#### Interpreting the Logistic Function

What does the logistic function tell us about mouse obesity?

- A heavy mouse has a high probability of being obese.
- An intermediate weight mouse has a 50% chance.
- A light mouse has a low probability.

This probabilistic interpretation is crucial for classification.

### Classification with Logistic Regression

How do we classify a mouse as obese or not?

## Classification with Logistic Regression

How do we classify a mouse as obese or not? If the predicted probability exceeds 50%, we classify it as obese; otherwise, it is classified as not obese.

## Classification with Logistic Regression

How do we classify a mouse as obese or not? If the predicted probability exceeds 50%, we classify it as obese; otherwise, it is classified as not obese. This classification process can be extended to multiple predictors, such as weight, genotype, and age.

#### **Testing Variable Significance**

How do we determine which variables are useful in our model?

## **Testing Variable Significance**

How do we determine which variables are useful in our model? We utilize Wald's test to assess whether the effect of each variable is significantly different from zero.

#### Mathematical Formulation

$$W = \frac{\hat{\beta}}{\mathsf{SE}(\hat{\beta})}$$

#### Where:

- $\hat{\beta}$  is the estimated coefficient.
- $SE(\hat{\beta})$  is the standard error of the coefficient.

This helps us identify non-contributing variables, such as astrological sign.

#### Maximum Likelihood Estimation

What is the method used to fit the logistic regression model?

#### Maximum Likelihood Estimation

What is the method used to fit the logistic regression model? Unlike linear regression, logistic regression employs maximum likelihood estimation (MLE).

#### Maximum Likelihood Estimation

What is the method used to fit the logistic regression model? Unlike linear regression, logistic regression employs maximum likelihood estimation (MLE).

#### Mathematical Formulation

$$L(\beta) = \prod_{i=1}^{n} P(Y_i|X_i)^{Y_i} (1 - P(Y_i|X_i))^{1-Y_i}$$

#### Where:

- $L(\beta)$  is the likelihood function.
- $Y_i$  is the observed outcome.

This method finds the parameter estimates that maximize the likelihood of the observed data.

### **Summary of Logistic Regression**

In summary, logistic regression allows us to classify outcomes using both continuous and categorical predictors.

## **Summary of Logistic Regression**

In summary, logistic regression allows us to classify outcomes using both continuous and categorical predictors. It provides probabilities for classification and assesses the significance of variables.

### Key takeaway

Logistic regression is a powerful tool in both traditional statistics and machine learning.

• Exercise 1: Explain the difference between linear regression and logistic regression in terms of the type of outcomes they predict.

- Exercise 1: Explain the difference between linear regression and logistic regression in terms of the type of outcomes they predict.
- Exercise 2: Given a dataset with mouse weights and obesity status, calculate the probability of a mouse being obese using logistic regression.

- Exercise 1: Explain the difference between linear regression and logistic regression in terms of the type of outcomes they predict.
- Exercise 2: Given a dataset with mouse weights and obesity status, calculate the probability of a mouse being obese using logistic regression.
- Exercise 3: Identify which variables might be significant predictors of obesity in a hypothetical study and justify your choices.

- Exercise 1: Explain the difference between linear regression and logistic regression in terms of the type of outcomes they predict.
- Exercise 2: Given a dataset with mouse weights and obesity status, calculate the probability of a mouse being obese using logistic regression.
- Exercise 3: Identify which variables might be significant predictors of obesity in a hypothetical study and justify your choices.
- Exercise 4: Discuss the implications of using maximum likelihood estimation in logistic regression compared to least squares in linear regression.