

STATISTICS AND BIG DATA '25-'26

K-means Clustering

Dr. Niccolò Salvini

Adjunct Professor @UCSC campus Rome, Sr. Data Scientist

- K-means clustering concepts —
- 1 principal ideas and overview
 - K-means in R —
- 2 minimal R code!
 - live coding session! —

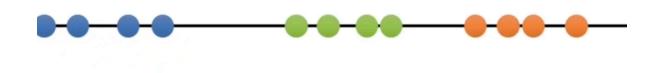
Section 1

K-means Principles

Cluster on a line

some data on a line...

You may guess some clusters, how would you do taht?

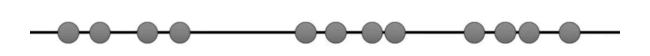


This is how a human would do that

Step 1: Select the number of clusters you want to identify in your data. This is the "K" in "K-means clustering".

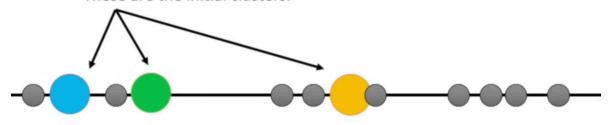
select#k

there a way to do that, we are going to see that later on. For now let's trust our guts feelings



Step 2: Randomly select 3 distinct data points.

These are the initial clusters.



step 1

init algorithm, randomly assign some grey bubbles to clusters.

point to the blue cluster

S
CC

Step 3: Measure the distance between the 1st point and the three initial clusters.

Distance from the 1st

step 2

compute each distance from first point to each of assigned colored bubble,

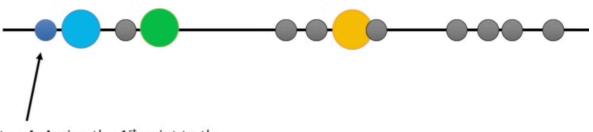
Distance from the 1st point to the green cluster

now for green

3: Measure the distance veen the 1st point and the three

al clusters.

ial clusters.

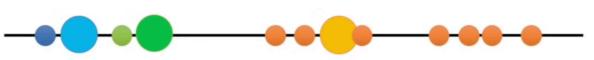


tep 4: Assign the 1st point to the earest cluster. In this case, the earest cluster is the **blue** cluster.

step 4 assign color based on proximity

the one with shortest distance is the cluster the grey point should be assigned to...

now for second grey point



The rest of these points are closest to the **orange** cluster, so they'll go in that one, too.

... for all the points in the line

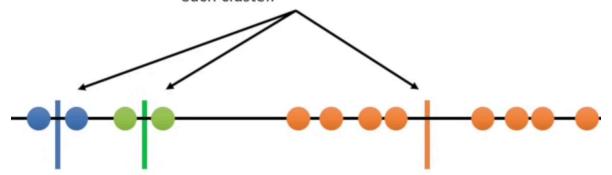
results:

- blue cluster: 2 obs

- green cluster: 2 obs

- yellow cluster: 8 obs

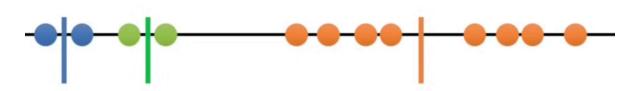
Step 5: calculate the mean of each cluster.



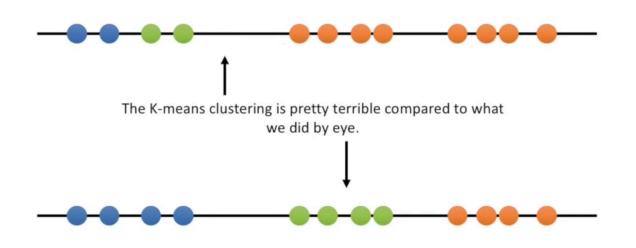
step 5

compute the mean for each cluster. That's why **k-means**

Since the clustering did not change at all during the last iteration, we're done...

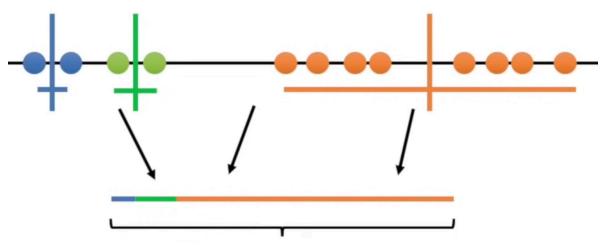


then reassingn cluster based on mean



human vs computer

we would have done better....



Total variation within the clusters

variation within

let's also compute variation within each cluster

The algo restarts...

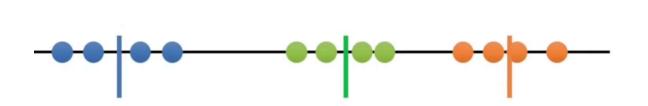
reassign cluster based on new init

in this case:

- blue cluster: 5 obs

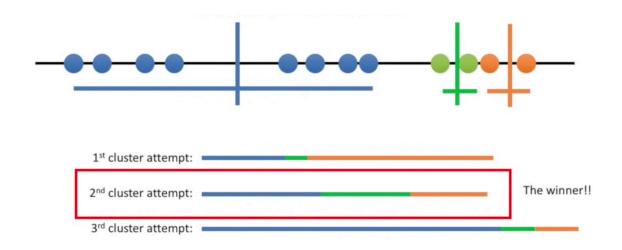
- green cluster: 3 obs

- yellow cluster: 4 obs



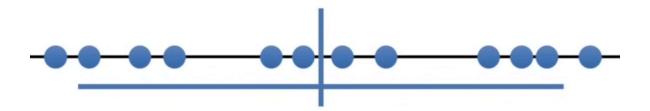
reassign cluster based on mean

... well this time is better: human and computer did the same

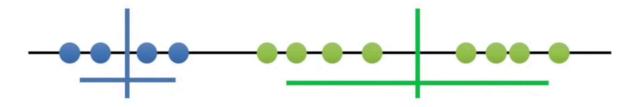


stop when assign = clust

measure differences over attempts (algo iterations)



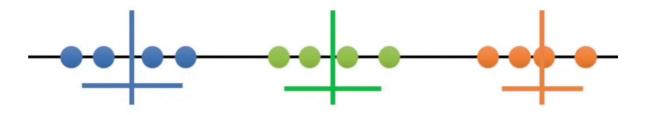
if we would have chosen # k = 1



K = 2 is better, and we can quantify how much better by comparing the total variation within the 2 clusters to K = 1

if we would have chosen # k = 2

compare below variation within clusters based on number of clusters.

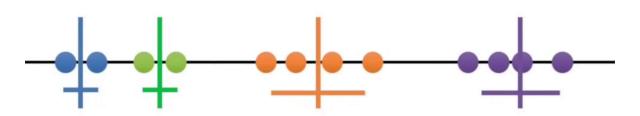


K=3 is even better! We can quantify how much better by comparing the total variation within the 3 clusters to K=2



if we would have chosen # k = 3

variation withion when k = 3 is actually lower.

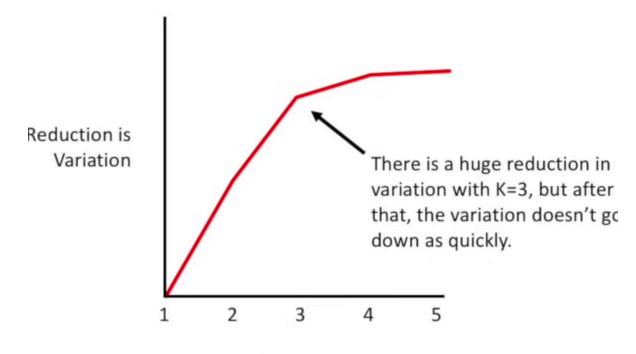


The total variation within each cluster is less than when K=3

if we would have chosen # k = 4

- keeps decreasing.
- that really resembles R2 behaviour, the more params you insert in the model, the better R2
- extreme case 1 clust per obs

we need to find a way to decide which is the best # k.



Number of clusters (K)

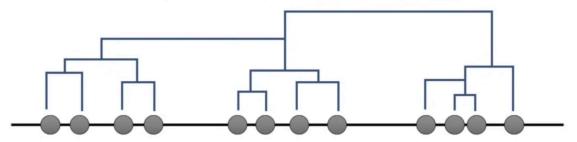
Elbow method

popular ML method, plot delta var over # algo iterations (in this case # k).

at some point the reduction in variation considerably stop increasing.

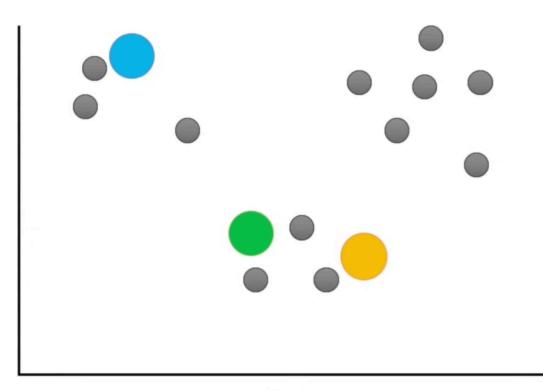
the question you should be asking: where should I stop?

Hierarchical clustering just tells you, pairwise, what two things are most similar.



hclust vs k-means

Just like before, you pick three random points...

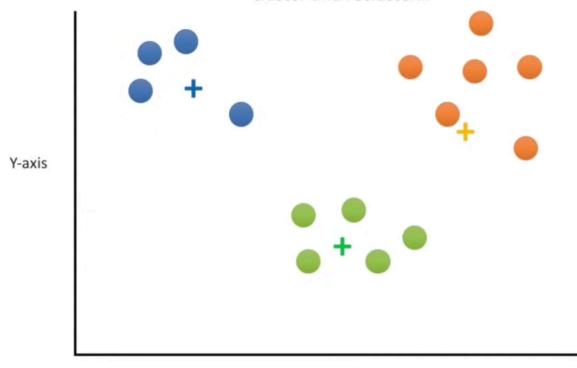


from 2D to 3D

X-axis

And, just like before, we then calculate the center of each cluster and recluster...

X-axis



...exactly the same

step 1: randomly assign and observation

to each of the 3 clusters.

step 2: compute diff from first assigned to

each other point

step 3: assign point to cluster

step 4: iterate over all the clusters

step 5: compute means

step 6: reassign cluster based on mean.

©2022 Proprietary and Confidential. All Rights Reserved.

Section 3

K-means R code


```
install.packages("cluster")
library(cluster)# Species from original dataset
iris_1 \leftarrow iris[, -5]
set.seed(240) # Setting seed
kmeans.re ← kmeans(iris_1, centers = 3, nstart = 20)
kmeans.re$cluster
y_kmeans ← kmeans.re$cluster
clusplot(iris_1[, c("Sepal.Length", "Sepal.Width")],
         y_kmeans,
         lines = 0,
         shade = TRUE,
         color = TRUE,
         labels = 2,
         plotchar = FALSE,
         span = TRUE,
         main = paste("Cluster iris"),
         xlab = 'Sepal.Length',
         ylab = 'Sepal.Width')
```

Section 4

Live coding session!

JUMP TO RSTUDIO!

