

STATISTICS AND BIG DATA '25-'26

PCA & CA in a nutshell

+ R Markdown bonus

Dr. Niccolò Salvini

Adjunct Professor @UCSC campus Rome, Sr. Data Scientist

- R markdown, what's that? —
- 1 R Markdown intro
- 2 R Markdown examples
- 3 Markdown syntax

- high level PCA concepts —
- PCAinR —
- 4 minimal R code!
 - live coding session! —

Section 1

R Markdown few concepts

What is R Markdown? 🤌

- R Markdown is a tool that combines R code with narrative text to create dynamic documents, presentations, and reports.
- It uses **Markdown syntax** for text formatting and allows the insertion of R code, which is executed when the document is compiled.

Why Use R Markdown? 🤌 🤌

- Reproducibility: Code and results are integrated into the document, making it easier to share and reproduce the analysis.
- Flexibility: Supports various output formats like HTML, PDF, Word, and presentations.
- **Efficiency:** Automates the data analysis and reporting process.

3 Components of an R Markdown File 🦿


```
title: "PCA in practice with R"
       "Sophie Dabo"
output: html_document
```

YAML Header: Specifies the title, author, date, and output format.

```
# Unsupervised Learning
## Principal Components Analysis
We will use the following packages 'FactoMineR', 'factoextra', 'ISRL2'
### PCA using 'FactoMineR', 'factoextra'
```

Narrative Text: Written in Markdown to describe the analysis.

```
{r include = FALSE, echo=FALSE}
#install.packages(c("FactoMineR","factoextra"))
library("FactoMineR")
library("factoextra")
```

R Code Chunks: Called 'chunks', they contain executable R code.

Creating a Document 💡

Open RStudio and select "File" > "New File" > "R Markdown".

Choose the output format and fill in the YAML header.

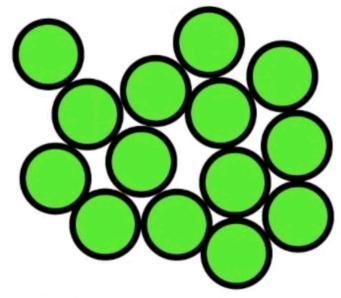
Write text and code in the appropriate blocks.

Compile the document to see the results i.e. click on KNIT

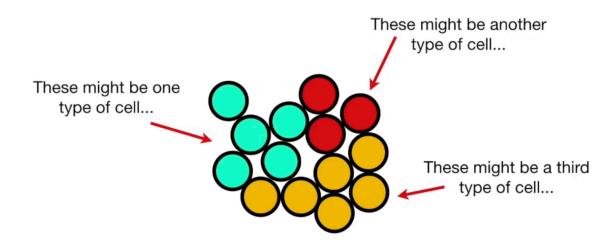
PSSS • I have also written a very brief doc on BB for the last step

Section 2

PCA, veeeery brief

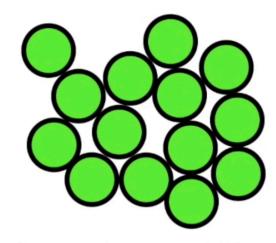


Let's say we had some normal cells...



are there any differences?

mmmh they seems all clustered together

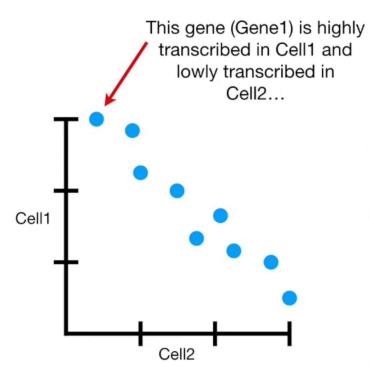


Unfortunately, we can't observe the differences from the outside...

...so we sequence the mRNA in each cell to identify which genes are active. This tells us what the cell is doing.

Why not observing MRNA sequence

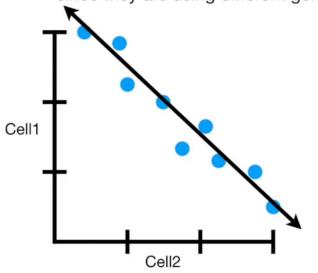
pssss. this is the technology behind COVID19 vaccine



	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

plot cell1 vs cell2

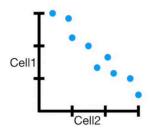
In general, Cell1 and Cell2 have an inverse correlation. This means that they are probably two different types of cells since they are using different genes.

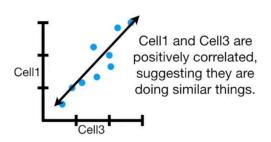


	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

How cell1 is related to cell2?

neg related

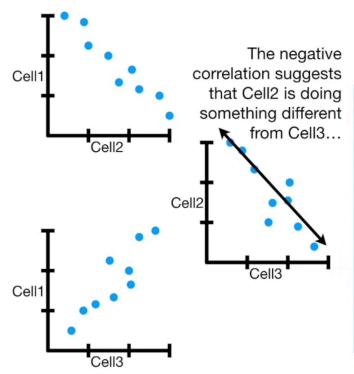




	Cell1	Cell2	Cell3
Gene1	3	0.25	2.8
Gene2	2.9	0.8	2.2
Gene3	2.2	1	1.5
Gene4	2	1.4	2
Gene5	1.3	1.6	1.6
Gene6	1.5	2	2.1
Gene7	1.1	2.2	1.2
Gene8	1	2.7	0.9
Gene9	0.4	3	0.6

cell1 vs cell3

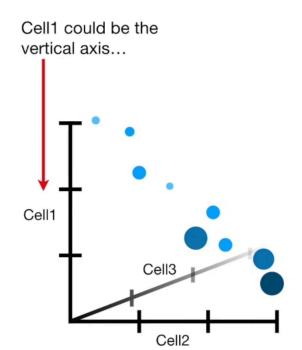
pos related

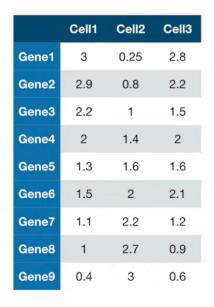


	Cell1	Cell2	Cell3
Gene1	3	0.25	2.8
Gene2	2.9	0.8	2.2
Gene3	2.2	1	1.5
Gene4	2	1.4	2
Gene5	1.3	1.6	1.6
Gene6	1.5	2	2.1
Gene7	1.1	2.2	1.2
Gene8	1	2.7	0.9
Gene9	0.4	3	0.6

cell2 vs cell3

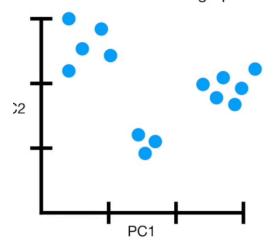
neg related





3D plot with 3 cells

A PCA plot converts the correlations (or lack there of) among all of the cells into a 2-D graph.

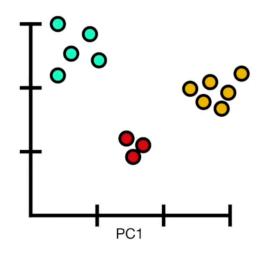


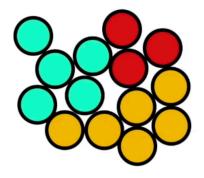
-	Cell1	Cell2	Cell3	Cell4	
Gene1	3	0.25	2.8	0.1	
Gene2	2.9	0.8	2.2	1.8	
Gene3	2.2	1	1.5	3.2	***
Gene4	2	1.4	2	0.3	
Gene5	1.3	1.6	1.6	0	···
Gene6	1.5	2	2.1	3	
Gene7	1.1	2.2	1.2	2.8	***
Gene8	1	2.7	0.9	0.3	
Gene9	0.4	3	0.6	0.1	

PCA converts correlation into a 2D graph

(for 2 components)

Once we've identified the clusters in the PC plot, we can go back to the original cells...

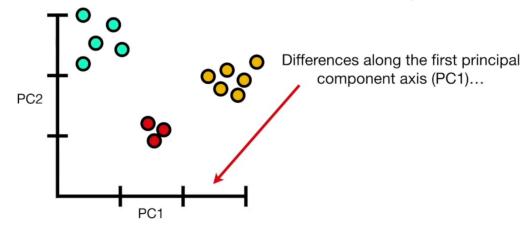




...and see that they represent 3 different types of cells doing 3 different things with their genes!!!!

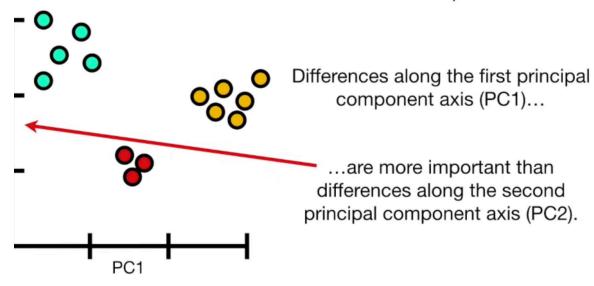
now back to initial cells plot

The axes are ranked in order of importance.



now look at x (PC1) axis

The axes are ranked in order of importance.



now look at y (PC2) axis

Section 3

PCA in R


```
ll.packages("FactoMineR")
ry(FactoMineR)
esult ← PCA(data, scale.unit = TRUE, ncp = 5, graph
) # TRUE if ypou want to see plot results (we are goi
ther functions to see that)
```

PCA results


```
library("factoextra")
fviz_pca_ind(pca_result,
            col.ind = "cos2", # Color by the quality of
representation
            gradient.cols = c("#00AFBB", "#E7B800",
"#FC4E07"),
            repel = TRUE # Avoid text overlapping (slow for
large datasets)
```

Visualizing Individuals (Observations)

visualising variables

Creating a Biplot


```
# Load packages
library(FactoMineR)
library(factoextra)
# Example dataset
data(iris)
iris_data ← iris[, -5] # Remove the species column
# Perform PCA
pca_res ← PCA(iris_data, scale.unit = TRUE, ncp = 4, graph =
FALSE)
# Scree plot
fviz_eig(pca_res)
```

scree plot


```
# Load packages
library(FactoMineR)
library(factoextra)
# Example dataset
data(iris)
iris_data ← iris[, -5]
# Perform PCA
pca_res ← PCA(iris_data, scale.unit = TRUE, ncp = 4, graph =
FALSE)
# Visualize results
fviz_pca_ind(pca_res)
fviz_pca_var(pca_res)
fviz_pca_biplot(pca_res)
```

working example

Section 1

Correspondant Analysis (CA)

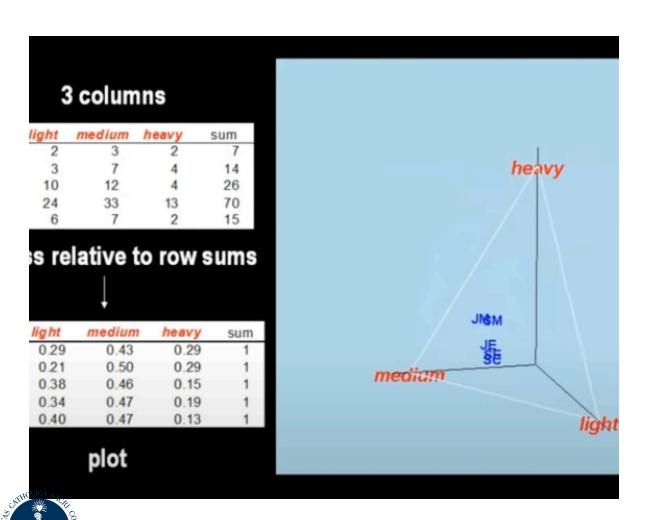
CA background

staff smoking class

roup		none	light	medium	heavy
r managers	SM	4	2	3	2
r managers	JM	4	3	7	4
employees	SE	25	10	12	4
employees	JE	18	24	33	13
Secretaries	SC	10	6	7	2
	sum	61	45	62	25

Idea? compare thin

CA background



PCA results

Section 4

Live coding session!

JUMP TO RSTUDIO!

