Hypotheses testing on an average

Statistics and Big Data

Niccolò Salvini, PhD

UCSC

Academic Year 2025-2026

Course: Statistics and Big Data

Overview

- What is Hypothesis Testing?
- 2 Concrete Example of Drug Testing (A)
- Formulating a Hypothesis
- Unexpected Results from Repeated Experiments
- Sejecting the Hypothesis
- 6 Introducing the Null Hypothesis
- Visualizing the Null Hypothesis
- Testing the Null Hypothesis
- Summary of Key Concepts
- 10 Exercises

What is Hypothesis Testing?

Concept

Imagine a scenario where we are testing the effectiveness of two different drugs on recovery time from a virus. How do we determine if one drug is truly better than the other? This leads us to the concept of hypothesis testing, a fundamental aspect of statistical analysis.

Concrete Example of Drug Testing

Drug A Recovery Times

We administer Drug A to three patients and measure their recovery times:

- Patient 1: 10 hours
- Patient 2: 15 hours
- Patient 3: 12 hours

The average recovery time for Drug A is calculated as follows:

Mean_A =
$$\frac{10 + 15 + 12}{3}$$
 = 12.33 hours

Concrete Example of Drug Testing (B)

Drug B Recovery Times

Now, we do the same for Drug B:

- Patient 1: 25 hours
- Patient 2: 20 hours
- Patient 3: 22 hours

The average recovery time for Drug B is:

Mean_B =
$$\frac{25 + 20 + 22}{3}$$
 = 22.33 hours

Formulating a Hypothesis

Hypothesis

Based on our preliminary data, we might hypothesize: **Hypothesis (H1)**: Patients taking Drug A recover, on average, 10 hours faster than those taking Drug B.

Unexpected Results from Repeated Experiments

New Averages

Upon repeating the experiment, we find:

- New average for Drug A: 25 hours
- New average for Drug B: 20 hours

This leads to a new average difference of:

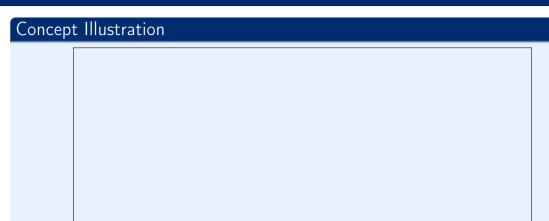
Difference =
$$Mean_B - Mean_A = 20 - 25 = -5$$
 hours

Rejecting the Hypothesis

Conclusion

After multiple experiments yielding inconsistent results, we reach a critical conclusion: We can confidently **reject** the initial hypothesis that Drug A is superior. This illustrates the importance of rigorous testing in hypothesis formulation.

Introducing the Null Hypothesis


Definition

Now, let's introduce a key concept: the **Null Hypothesis** (H0). The null hypothesis states that there is no effect or difference between the groups being tested.

Null Hypothesis

In our case, we would state: H0: There is no difference in recovery time between Drug A and Drug B.

Visualizing the Null Hypothesis

null_hypothesis_graphic.png

Testing the Null Hypothesis

Analysis

When we conduct our experiments, we analyze the data to determine if we can reject the null hypothesis. If the data shows a significant difference that cannot be attributed to random chance, we reject H0.

Summary of Key Concepts

Summary

To summarize:

- We formulate hypotheses based on preliminary data.
- We conduct experiments to test these hypotheses.
- 3 We use the null hypothesis as a baseline for comparison.
- We reject or fail to reject the null hypothesis based on statistical evidence.

Exercises

Exercise 1

Define the null hypothesis in your own words and provide an example related to drug testing.

Exercise 2

Given the following recovery times for Drug C (8, 9, 10 hours) and Drug D (15, 14, 16 hours), calculate the means and formulate a hypothesis.

Exercise 3

Discuss a scenario where failing to reject the null hypothesis could lead to incorrect conclusions.

Exercise 4

Consider a situation where you have multiple hypotheses. How would you determine